by Arthur Firstenberg
The single most important fact about
5G
that nobody is talking about is called “phased array.” It will totally
change the way cell towers and cell phones are constructed and will
transform the blanket of radiation which has enveloped our world for two
decades into a million powerful beams whizzing by us at all times.
Blake Levitt, author of
Electromagnetic Fields: A Consumer’s Guide to the Issues and How to Protect Ourselves
(Harcourt Brace, 1995), brought this to my attention. A mutual friend,
with whom I was speaking during the campaign to defeat S.B. 649 in
California, passed on a message from Blake: “5G antennas will be phased
arrays; Arthur will know what that means.” And I did.
Phased arrays were one of the first things I learned about in the
very beginning of my long, involuntary journey from medical student to
campaigner against wireless technology. After I was injured by X-rays in
1980, I began to read everything I could get my hands on that had to do
with electromagnetic radiation and its effects on life. And one of the
first books I read was Paul Brodeur’s
The Zapping of America (W.W. Norton, 1977).
Early warnings
Brodeur was a staff writer for the
New Yorker who had
purchased property on Cape Cod, Massachusetts, only to discover that 30
miles inland, across the bay from his future home, the Air Force was
planning to construct the world’s most powerful radar station. It was
going to scan the Atlantic Ocean as a key early warning element
protecting us against the threat of sea-launched ballistic missiles from
the Soviet Union. Although it emitted an average power of only 145,000
watts, similar to some FM radio stations, it did not broadcast that
energy from only a single antenna and it did not spread that energy out
uniformly in all directions. Instead, it had 3,600 antennas arranged in
two “phased arrays” of 1,800 antennas each. The antennas in each array
worked together as a unit to focus all their energy into a narrow,
steerable beam. Each beam had an effective power of four billion watts,
and the peak radiation level exceeded 0.3 milliwatt per square
centimeter—the FCC’s safety limit today—at a distance of ten miles in
front of the radar station. The facility was called PAVE PAWS (Precision
Acquisition of Vehicle Entry Phased Array Warning System).
The Defense Department acknowledged in a 1975 report, quoted by
Brodeur, that such systems “energize thousands of operational elements,
are electronically steered at high search rates, and operate at a
frequency range having a maximum whole body energy transfer to man and
for which little bioeffects data exists.”
Shortly after I read this, I discovered firsthand what some of the
bioeffects were.
Attempting to finish my M.D. almost cost me my life. I
collapsed one day with all the symptoms of a heart attack, whereupon I
resigned from school and moved up to Mendocino to recover. There I was
in the path of the other PAVE PAWS, the one that scanned the Pacific
Ocean. This PAVE PAWS was due east of Mendocino, in California’s Central
Valley at Beale Air Force Base. And for nine months, every evening at
precisely 7:00 p.m., no matter where I was or what I was doing, my chest
would tighten and I would be unable to catch my breath for the next two
hours. At precisely 9:00 p.m., my body would relax and I could breathe.
I lived in Mendocino from 1982 through 1984, and although I eventually
recovered my health, I was always aware of an uncomfortable pressure in
my chest whenever I was on the coast. I also lived in Mendocino from
1999 to 2004, and felt that same discomfort whenever I was there, and
always felt it suddenly vanish when I drove out of range of PAVE PAWS,
and suddenly return at the same point on my journey home.
Directed beams
5G is going to be at a much higher frequency range, which means the
antennas are going to be much smaller—small enough to fit inside a
smartphone—but like in PAVE PAWS they are going to work together in a
phased array, and like in PAVE PAWS they are going to concentrate their
energy in narrow, steerable high power beams. The arrays are going to
track each other, so that wherever you are, a beam from your smartphone
is going to be aimed directly at the base station (cell tower), and a
beam from the base station is going to be aimed directly at you. If you
walk between someone’s phone and the base station, both beams will go
right through your body. The beam from the tower will hit you even if
you are standing near someone who is on a smartphone. And if you are in a
crowd, multiple beams will overlap and be unavoidable.
At present, smartphones emit a maximum of about two watts, and
usually operate at a power of less than a watt. That will still be true
of 5G phones, however inside a 5G phone there may be 8 tiny arrays of 8
tiny antennas each, all working together to track the nearest cell tower
and aim a narrowly focused beam at it. The FCC has recently adopted
rules allowing the effective power of those beams to be as much as 20
watts. Now if a handheld smartphone sent a 20-watt beam through your
body, it would far exceed the exposure limit set by the FCC. What the
FCC is counting on is that there is going to be a metal shield between
the display side of a 5G phone and the side with all the circuitry and
antennas. That shield will be there to protect the circuitry from
electronic
interference that would otherwise be caused by the display
and make the phone useless. But it will also function to keep most of
the radiation from traveling directly into your head or body, and
therefore the FCC is allowing 5G phones to come to market that will have
an effective radiated power that is ten times as high as for 4G phones.
What this will do to the user’s hands, the FCC does not say. And who is
going to make sure that when you stick a phone in your pocket, the
correct side is facing your body? And who is going to protect all the
bystanders from radiation that is coming in
their direction that is ten times as strong as it used to be?
And what about all the other 5G equipment that is going to be
installed in all your computers, appliances, and automobiles? The FCC
calls handheld phones “mobile stations.” Transmitters in cars are also
“mobile stations.” But the FCC has also issued rules for what it calls
”transportable stations,” which it defines as transmitting equipment
that is used in stationary locations and not in motion, such as local
hubs for wireless broadband in your home or business. The FCC’s new
rules allow an effective radiated power of 300 watts for such equipment.
Enormous power
The situation with cell towers is, if anything, worse. So far the FCC
has approved bands of frequencies around 24 GHz, 28 GHz, 38 GHz, 39
GHz, and 48 GHz for use in 5G stations, and is proposing to add 32 GHz,
42 GHz, 50 GHz, 71-76 GHz, 81-86 GHz, and above 95 GHz to the soup.
These have tiny wavelengths and require tiny antennas. At 48 GHz, an
array of 1,024 antennas will measure only 4 inches square. And the
maximum radiated power from a base station will probably not be that
large—tens or hundreds of watts. But just as with PAVE PAWS, arrays
containing such large numbers of antennas will be able to channel the
energy into highly focused beams, and the
effective radiated
power will be enormous. The rules adopted by the FCC allow a 5G base
station operating in the millimeter range to emit an effective radiated
power of up to 30,000 watts per 100 MHz of spectrum. And when you
consider that some of the frequency bands the FCC has made available
will allow telecom companies to buy up to
3 GHz of contiguous spectrum at auction, they will legally be allowed to
emit an effective radiated power of up to 900,000 watts if they own
that much spectrum. The base stations emitting power like that will be
located on the sidewalk. They will be small rectangular structures
mounted on top of utility poles.
The reason the companies want so much power is because millimeter
waves are easily blocked by objects and walls and require tremendous
power to penetrate inside buildings and communicate with all the devices
that we own that are going to part of the Internet of Things. The
reason such tiny wavelengths are required is because of the need for an
enormous amount of bandwidth—a hundred times as much bandwidth as we
formerly used—in order to have smart homes, smart businesses, smart
cars, and smart cities, i.e. in order to connect so many of our
possessions, big and small, to the internet, and make them do everything
we want them to do as fast as we want them to do it. The higher the
frequency, the greater the bandwidth—but the smaller the waves. Base
stations have to be very close together—100 meters apart in cities—and
they have to blast out their signals in order to get them inside homes
and buildings. And the only way to do this economically is with phased
arrays and focused beams that are aimed directly at their targets. What
happens to birds that fly through the beams, the FCC does not say. And
what happens to utility workers who climb utility poles and work next to
these structures everyday? A 30,000-watt beam will cook an egg, or an
eye, at a distance of a few feet.
The power from a base station will be distributed among as many
devices as are connected at the same time. When a lot of people are
using their phones simultaneously, everyone’s phone will slow down but
the amount of radiation in each beam will be less. When you are the only
person using your phone—for example, late at night—your data speed will
be blisteringly fast but most of the radiation from the cell tower will
be aimed at you.
Deep penetration into the body
Another important fact about radiation from phased array antennas is
this: it penetrates much deeper into the human body and the assumptions
that the FCC’s exposure limits are based on do not apply. This was
brought to everyone’s attention by Dr. Richard Albanese of Brooks Air
Force Base in connection with PAVE PAWS and was reported on in
Microwave News
in 2002. When an ordinary electromagnetic field enters the body, it
causes charges to move and currents to flow. But when extremely short
electromagnetic pulses enter the body, something else happens: the
moving charges themselves become little antennas that re-radiate the
electromagnetic field and send it deeper into the body. These
re-radiated waves are called Brillouin precursors. They become
significant when either the power or the phase of the waves changes
rapidly enough. 5G will probably satisfy both requirements. This means
that the reassurance we are being given—that these millimeter waves are
too short to penetrate far into the body—is not true.
In the United States, AT&T, Verizon, Sprint, and T-Mobile are all
competing to have 5G towers, phones, and other devices commercially
available as early as the end of 2018. AT&T already has experimental
licenses and has been testing 5G-type base stations and user equipment
at millimeter wave frequencies in Middletown, New Jersey; Waco, Austin,
Dallas, Plano, and Grapevine, Texas; Kalamazoo, Michigan; and South
Bend, Indiana.
Verizon has experimental licenses and has been conducting
trials in Houston, Euless, and Cypress, Texas; South Plainfield and
Bernardsville, New Jersey; Arlington, Chantilly, Falls Church, and
Bailey’s Crossroads, Virginia; Washington, DC; Ann Arbor, Michigan;
Brockton and Natick, Massachusetts; Atlanta; and Sacramento.
Sprint has
experimental licenses in Bridgewater, New Brunswick, and South
Plainfield, New Jersey; and San Diego. T-Mobile has experimental
licenses in Bellevue and Bothell, Washington; and San Francisco.
Related:
Military-Grade-5G-Weapon-Stop5G
No comments:
Post a Comment